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Abstract

Because writing computer programs is hard, computer
programmers are taught to use encapsulation and mod-
ularity to hide complexity and reduce the potential for
errors. Their programs will have a high-level, hierar-
chical structure that reflects their choice of internal ab-
stractions. We designed and forged a system, Laika, that
detects this structure in memory using Bayesian unsu-
pervised learning. Because almost all programs use data
structures, their memory images consist of many copies
of a relatively small number of templates. Given a mem-
ory image, Laika can find both the data structures and
their instantiations.

We then used Laika to detect three common polymor-
phic botnets by comparing their data structures. Because
it avoids their code polymorphism entirely, Laika is ex-
tremely accurate. Finally, we argue that writing a data
structure polymorphic virus is likely to be considerably
harder than writing a code polymorphic virus.

1 Introduction

System designers use abstractions to make building com-
plex systems easier. Fixed interfaces between compo-
nents allow their designers to innovate separately, reduce
errors, and construct the complex computer systems we
use today. The best interfaces provide exactly the right
amount of detail, while hiding most of the implementa-
tion complexity.

However, no interface is perfect. When system de-
signers need additional information they are forced to
bridge the gap between levels of abstraction. The easi-
est, but most brittle, method is to simply hard-code the
mapping between the interface and the structure built on
top of it. Hard-coded mappings enable virtual machine
monitor based intrusion detection [13, 22] and discovery
of kernel-based rootkits using a snapshot of the system
memory image [29]. More complicated but potentially

more robust techniques infer details by combining gen-
eral knowledge of common implementations and runtime
probes. These techniques allow detection of OS-level
processes from a VMM using CPU-level events [18, 20],
file-system-aware storage systems [19, 32], and storage-
aware file systems [28]. Most of these techniques work
because the interfaces they exploit can only be used in
a very limited number of ways. For example, only an
extremely creative engineer would use the CR3 register
in an x86 processor for anything other than process page
tables.

The key contribution of this paper is the observation
that even more general interfaces are used often by pro-
grammers in standard ways. Because writing computer
programs correctly is so difficult, there is a large assort-
ment of software engineering techniques devoted to mak-
ing this process easier and more efficient. Ultimately
most of these techniques revolve around the same ideas
of abstraction and divide-and-conquer as the original in-
terfaces. Whether this is the only way to create complex
systems remains to be seen, but in practice these ideas
are pounded into prospective programmers by almost ev-
ery text on computer science, from The Art of Computer
Programming to the more bourgeoisie Visual Basic for
Dummies.

We chose to exploit a small piece of this software engi-
neering panoply, the compound data structure. Organiz-
ing data into objects is so critical for encapsulation and
abstraction that even programmers who do not worship
at the altar of object-oriented programming usually use
a significant number of data structures, if only to imple-
ment abstract data types like trees and linked lists. There-
fore we can expect the memory image of a process to
consist of a large number of instantiations of a relatively
small number of templates.

This paper describes the design and implementation
of a system – which we named Laika in honor of the
Russian space dog – for detecting those data structures
given a memory image of the program. The two key
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challenges are identifying the positions and sizes of ob-
jects, and determining which objects are similar based
on their byte values. We identify object positions and
sizes by using potential pointers in the image to estimate
object positions and sizes. We determine object similar-
ity by converting objects from sequences of raw bytes
into sequences of semantically valued blocks: “proba-
ble pointer blocks” for values that point into the heap or
the stack, “probable string blocks” for blocks that con-
tain null-terminated ASCII strings, and so on. Then, we
cluster objects with similar sequences of blocks together
using Bayesian unsupervised learning.

Although conceptually simple, detecting data struc-
tures in practice is a difficult machine learning problem.
Because we are attempting to detect data structures with-
out prior knowledge, we must use unsupervised learn-
ing algorithms. These are much more computationally
complex and less accurate than supervised learning algo-
rithms that can rely on training data. Worse, the memory
image of a process is fairly chaotic. Many malloc im-
plementations store chunk information inside the chunks,
blending it with the data of the program. The heap is also
fairly noisy: a large fraction consists of effectively ran-
dom bytes, either freed blocks, uninitialized structures,
or malloc padding. Even the byte/block transformation is
error-prone, since integers may have values that “point”
into the heap. Despite these difficulties, Laika manages
reasonable results in practice.

To demonstrate the utility of Laika, we built a virus
checker on top of it. Current virus checkers are basi-
cally sophisticated versions of grep [2]. Each virus is
identified with a fingerprint, usually a small sequence
of instructions. When the virus checker finds that fin-
gerprint in a program, it classifies it as a version of the
corresponding virus. Because it is easy to modify the in-
struction stream of a program in provably correct ways,
virus writers have created polymorphic engines that re-
place one set of instructions with another computation-
ally equivalent one, obfuscating the fingerprints [25].
Most proposals to combat polymorphic viruses have fo-
cused on transforming candidate programs into vari-
ous canonical formats in order to run fingerprint scan-
ners [5, 8, 23].

Instead, our algorithm classifies programs based on
their data structures: if an unknown program uses the
same data structures as Agobot, it is likely to in fact be
a copy of Agobot. Not only does this bypass all of the
code polymorphism in current worms, but the data struc-
tures of a program are likely to be considerably more
difficult to obfuscate than the executable code – roughly
compiler-level transformations, rather than assembler-
level ones. Our polymorphic virus detector based on
Laika is over 99% accurate, while ClamAV, a leading
open source virus detector, manages only 85%. Finally,

by detecting programs based on completely different fea-
tures our detector has a strong synergy with traditional
code-based virus detectors.

Memory-based virus detection is especially effective
now that malware writers are turning from pure mayhem
to a greedier strategy of exploitation [1, 12]. A worm that
merely replicates itself can be made very simple, to the
point that it probably does not use a heap, but a botnet
that runs on an infected computer and provides useful (at
least to the botnet author) services like DoS or spam for-
warding is more complex, and more complexity means
more data structures.

2 Data Structure Detection

A classifier is an algorithm that groups unknown ob-
jects, represented by vectors of features, into semantic
classes. Ideally, a classification algorithm is given both a
set of correctly classified training data and a list of fea-
tures. For example, to classify fruit the algorithm might
be given the color, weight, and shape of a group of or-
anges, apples, watermelons, and bananas, and then asked
whether a 0.1 kg red round fruit is an apple or a banana.
This is called supervised learning; a simple example is
the naive Bayes classifier, which learns a probability dis-
tribution for each feature for each class from the training
data. It then computes the class membership probability
for unknown objects as the product of the class feature
probabilities and the prior probabilities, and places the
object in the most likely class. When we do not have
training data, we must fall back to unsupervised learn-
ing. In unsupervised learning, the algorithm is given
a list of objects and features and directed to create its
own classes. Given a basket of fruit, it might sort them
into round orange things, round red things, big green
things, and long yellow things. Designing a classifier in-
volves selecting features that expose the differences be-
tween items and algorithms that mirror the structure of
the problem.

2.1 Atoms and Block Types

The most important part of designing any classifier is
usually selecting the features. Color, shape, and weight
will work well for fruit regardless of what algorithm is
used, but country of origin will not. This problem is par-
ticularly acute for data structure detection, because two
objects from the same class may have completely differ-
ent byte values. Our algorithm converts each machine
word (4 on 32-bit machines, 8 bytes on 64-bit machines)
into a block type. The basic block types are address
(points into heap/stack), zero, string, and data (every-
thing else). This converts objects from vectors of bytes
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Address Value Char Value Block 

0x650000 0x20 “!” D 

0x650008 0x0 “\0” 0 

0x650010 0x650028 “\FS\0e” A 

0x650018 0x650088 “\^\0e” A 

0x650020 0x20 “!” D 

0x650028 0x650008 “\BS\0e” A 

0x650030 0x650048 “0\0e” A 

0x650038 0x650068 “h\0e” A 

0x650040 0x20 “!” D 

0x650048 0x650028 “\FS\0\e” A 

0x650050 0x0 “\0” 0 

0x650058 0x650068 “h\0e” A 

0x650060 0x20 “!” D 

0x650068  0x6873696620656E6F “one fish” S 

0x650070 0x6966206F7774202C “, two fi” S 

0x650078 0x20646572202C6873 “sh, red ” S 

0x650080 0x20 “!” D 

0x650088 0x6C62202C68736966 “fish, bl” S 

0x650090 0x2E68736966206575 “ue fish.” S 

0x650098 0x56700 “\0g\ENQ” D 

0x6500A0 0x40 “A” D 

Class 1* 

Class 1* 

Class 2* 

Integer 

0x650008 No 0AAD 

0x650028 No AAAD 

0x650048 No A0AD 

0x650068 Yes; x3 SSSD 

0x650088 Yes; x2 SSDD String 

Address        Array?       Blocks Class 1 

Class 2 Address        Array?       Blocks 

Composition 

Composition 

Figure 1: An example of data structure detection. On the left is a small segment of the heap, and on the right is Laika’s
output. Class 1, in rows 2-13, is a doubly linked list of C strings; the first two elements are pointers to other elements
of Class 1. The fourth element is actually internal malloc data on the size of the next chunk. Laika estimates the start
of the next object as the end of the first, which is 8 bytes too long. Class 2 contains two C null-terminated character
arrays. A real heap sample is much noisier; in the programs we looked at, less than 50% of the heap was occupied by
active objects; the rest was a mix of freed objects, malloc padding, and unallocated chunks.

into vectors of block types, and we can expect the block
type vectors to be similar for objects from the same class.

Classes are represented as vectors of atomic types.
Each atomic type roughly corresponds to one block type
(e.g., pointer→ address and integer→ data), but there is
some margin for error since the block type classification
is not always accurate; some integer or string values may
point into the heap, some pointers may be uninitialized,
a programmer may have used a union, and so on. This
leads to a probability array p(blocktype|atomictype)
where the largest terms are on the diagonal, but all ele-
ments are nonzero. While these probabilities will not be
exactly identical for individual applications, in our ex-
perience they are similar enough that a single probabil-
ity matrix suffices for most programs. In the evaluation
we measured p(blocktype|atomictype) for several pro-
grams; all of them had strongly diagonal matrices. There
is also a random atomic type for blocks that lie between
objects. Figure 1 shows an example of what memory
looks like when mapped to block and atomic types.

Although the block type/atomic type system allows us
to make sense of the otherwise mystifying bytes of a
memory image, it does have some problems. It will miss

unaligned pointers completely, since the two halves of
the pointer are unlikely to point at anything useful, and
it will also miss the difference between groups of inte-
gers, for example four 2-byte integers vs. one 8-byte in-
teger. In our opinion these problems are relatively minor,
since unaligned pointers are quite rare, and it would be
extremely difficult to distinguish between four short ints
and one long int anyway. Lastly, if the program occupies
a significant fraction of its address space there will be
many integer/pointer mismatches, but as almost all new
CPUs are 64-bit, the increased size of a 64-bit address
space will reduce the probability of false pointers.

2.2 Finding Data Structures

Unlike the idyllic basket of fruit, it is not immediately
obvious where the objects lurk in an image, but we can
estimate their positions using the targets of the pointers.
Our algorithm scans through a memory image looking
for all pointers, and then tentatively estimates the posi-
tions of objects as those addresses referenced in other
places of the image.

Although pointers can mark the start of an object, they
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seldom mark the end. Laika estimates the sizes of objects
during clustering. Each object’s size is bounded by the
distance to the next object in the address space, and each
class has a fixed size, which is no larger than its smallest
object. If an object is larger than the size of its class,
its remaining blocks are classified as random noise. For
this purpose we introduce the random atomic type, which
generates all block types more or less equally. In practice
some objects might be split in two by internal pointers -
pointers to the interior of malloc regions. At the moment
we do not merge these objects.

2.3 Exploiting Malloc
It should be possible for Laika to find objects more accu-
rately when armed with prior information about the de-
tails of the malloc library. For example, the Lea allocator,
used in GNU libc, keeps the chunk size field inlined at
the top of the chunk as shown in figure 1. Unfortunately
there is sufficient variety in malloc implementations to
make this approach tedious. Aside from separate mal-
loc implementations for Windows and Linux, there are
many custom allocators, both for performance and other
motivations like debugging.

Early versions of Laika attempted to exploit some-
thing that most malloc implementations should share:
address space locality. Most malloc implementations
divide memory into chunks, and chunks of the same
size often lie in contiguous regions. Since programs ex-
hibit spatial locality as well, this means that an object
will often be close to one or more objects of the same
type in memory; in the applications we measured over
95% of objects had at least one object of the same class
within their 10 closest neighbors. Despite this encourag-
ing statistic, the malloc information did not significantly
change Laika’s classification accuracy. We believe this
occurs because Laika already knows that nearby objects
are similar due to similar size estimations.

2.4 Bayesian Model
Bayesian unsupervised learning algorithms compute a
joint probability over the classes and the classification,
and then select the most likely solution. We represent
the memory image by M , where M l is the lth machine
word of the memory image, ω for the list of classes,
where ωjk is the kth atomic type of class j, and X for
the list of objects, where Xi is the position of the ith ob-
ject. We do not store the lengths of objects, since they
are implied by the classification. Our notation is summa-
rized in Table 1.

We wish to estimate the most likely set of objects and
classes given a particular memory image. With Bayes’s
rule, this gives us:

p(ω,X|M) =
p(M |ω,X)p(X|ω)p(ω)

p(M)
(1)

Since Laika is attempting to maximize p(ω,X|M),
we can drop the normalizing term p(M) , which does not
affect the optimum solution, and focus on the numerator.
p(ω) is the prior probability of the class structure. To
simplify the mathematics, we assume independence both
between and within classes, even though this assumption
is not really accurate (classes can often contain arrays of
basic types or even other objects). We let ωjk be the kth
element of class j, which lets us simply multiply out over
all such elements:

p(ω) =
∏
j

∏
k

p(ωjk) (2)

p(X|ω) is the probability of the locations and sizes of
the list of objects, based on our class model and what
we know about data structures. This term is 0 for il-
legal solutions where two objects overlap, and 1 other-
wise. p(M |ω,X) represents how well the model fits the
data. When the class model and the instantiation list are
merged, they predict a set of atomic data types (including
the random “type”) that cover the entire image. Since we
know the real block type M l, we can compute the prob-
ability of each block given classified atomic type:

p(M |ω,X) =
∏

l

p(M l|ω,X) (3)

When p(ω), p(X|ω), and p(M |ω,X) are multiplied
together, we finally get a master equation which we can
use to evaluate the likelihood of a given solution. Al-
though the master equation is somewhat formidable, the
intuition is very simple; p(M |ω,X) penalizes Laika
whenever it places an object into an unlikely class, and
ensuring that the solution reflects the particular memory
image, while p(ω) enforces Occam’s razor by penalizing
Laika whenever it creates an additional class, thus caus-
ing it to prefer simpler solutions.

2.5 Typed Pointers
While the simple pointer/integer classification system al-
ready produces reasonable results, a key optimization
is the introduction of typed pointers. If all of the in-
stances of a class have a pointer at a certain offset, it
is probable that the targets of those pointers are also in
the same class. As the clustering proceeds and the algo-
rithm becomes more confident of the correct clustering, it
changes the address blocks to typed address blocks based
on the class of their target. Typed pointers are especially
important for small objects, because the class is smaller

4



atomic type A machine level type, like a pointer.
block type Value of an atomic type

data structure “struct 1”. Compound type.
Xi instantiation / object i
i index of objects

ωj class / compound data type j
j index of classes
k block offset within a class /object

M the memory image of our process
l index with a memory image

Table 1: Terms and symbols

and inherently less descriptive, and objects that contain
no pointers, which can sometimes be accurately grouped
solely by their references. Since it is impossible to mea-
sure the prior and posterior probabilities for the classes
and pointers of an unknown program, we simply mea-
sured the probability that a typed pointer referred to a
correctly typed address or an incorrectly typed address.
Typed pointers greatly increase the computational com-
plexity of the equation, because the classification of in-
dividual objects is no longer independent if one contains
a pointer to the other. Worse, when Laika makes a mis-
take, the typed pointers will cause this error to propagate.
Since typed pointer mismatches are weighted very heav-
ily in the master equation, Laika may split the classes
that reference the poorly classified data structure as well.

2.6 Dynamically-Sized Arrays

The second small speed bump is the dynamically-sized
array. In standard classification, all elements in a class
have feature vectors of the same size. Obviously this is
not true with data structures, with the most obvious and
important being the ubiquitous C string. We handle a dy-
namic array by allowing objects to “wrap around” mod-
ulo the size of a class. In other words, we allow an object
to be classified as a contiguous set of instantiations of a
given class - an array.

3 Implementation

We implemented Laika in Lisp; the program and its test-
ing tools total about 5000 lines, including whitespace and
comments. The program attempts to find good solutions
to the master equation when given program images.

Unfortunately our master equation is computationally
messy. Usually, unsupervised learning is difficult, while
supervised learning is simple: each item is compared
against each class and placed in the class that gives the
least error. But with our model, if X1 contains a pointer

to X2, the type of X2 will affect the block type and
therefore the classification error of X1, so even an ex-
act supervised solution is difficult. Therefore our only
choice is to rely on an approximation scheme. Laika
computes p(ω,X|M) incrementally and uses heuristics
to decide which classification changes (e.g., move X233

from ω17 to ω63). We leverage typed pointers to com-
pute reasonable changes. For example, whenever an ob-
ject is added to a class that contains a typed pointer, it
tries to move the pointer targets of that object into the
appropriate class.

4 Data Structure Detection

Measuring Laika’s ability to successfully identify data
structures proved surprisingly difficult. Because the pro-
grams we measured are not typesafe, there is no way to
determine with perfect accuracy the types of individual
bytes. The problems begin with unions, continue with
strange pointer accesses, and climax with bugs and buffer
overflows. Fortunately these are not too common, and we
believe our ground truth results are mostly correct.

We used Gentoo Linux to build a complete set of appli-
cations and libraries compiled with debugging symbols
and minimal optimizations. We then ran our test pro-
grams with a small wrapper for malloc which recorded
the backtrace of each allocation, and used GDB to obtain
the corresponding source lines and guesses at assignment
variables at types. Because of the convoluted nature of C
programs, we manually checked the results and cleaned
up things like macros, typedefs, and parsing errors.

Our model proved mostly correct: less than 1% of
pointers are unaligned, and only 1% of integers and 3%
of strings point into the heap. About 80% of pointers
point to the head of objects. Depressingly, the heap is
extremely noisy: on average only 45% of a program’s
heap address space is occupied by active objects, with
the rest being malloc padding and unused or uninitial-
ized chunks. Even more depressingly, only 30% of ob-
jects contain a pointer. Since Laika relies on building
“pointer fingerprints” to classify objects, this means that
the remaining 70% of objects are classed almost entirely
by the objects that point to them.

We also encountered a rather disturbing number of
poor software engineering practices. Several key X Win-
dow data structures, as well as the Perl Compatible Reg-
ular Expressions library used by Privoxy, use the dreaded
tail accumulator array. This archaic programming prac-
tice appends a dynamically sized array to a fixed struc-
ture; the last element is an array of size 0 and each call
to malloc is padded with the size of the array. Although
this saves a call to malloc, it makes the software much
harder to maintain. This hampers our results on all of
the X Window applications, because Laika assumes that
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Name Objects Classes p(real|laika) p(laika|real) pobj(real|laika) pobj(laika|real)
blackhack 215 6 0.87 1.00 0.87 1.00
xeyes 680 17 0.66 0.68 0.74 0.93
ctorrent 295 19 0.61 0.67 0.60 0.70
privoxy 3881 32 0.90 0.71 0.93 0.82
xclock 2422 54 0.62 0.44 0.72 0.38
xpdf 16846 180 0.61 0.57 0.64 0.56
xarchiver 20993 315 0.52 0.49 0.60 0.60
Average 6476 89 0.68 0.65 0.73 0.71

blackhack-wm 201 8 0.96 1.00 0.96 1.00
ctorrent-wm 249 13 0.80 0.66 0.78 0.73
xeyes-wm 526 22 0.83 0.67 0.79 0.95
privoxy-wm 3615 32 0.92 0.71 0.90 0.88
xclock-wm 2197 43 0.72 0.58 0.79 0.56
xarchiver-wm 7501 89 0.77 0.62 0.80 0.66
xpdf-wm 12995 194 0.63 0.62 0.69 0.64
Average-wm 3898 57 0.80 0.70 0.82 0.77

Table 2: Data Structure Detection Accuracy. The first part of the table shows Laika’s accuracy using only the memory
image; the second part using the memory image and a list of the sizes and locations of objects. pobj(real|laika) and
pobj(laika|real) are the accuracy when known atomic types like int or char are ignored.

all data structures have a fixed length. To express our
appreciation, we sent the X Window developers a dirty
sock.

We concentrated on the classification accuracy, the
chance that Laika actually placed objects from the same
real classes together, as opposed to the block accuracy,
the chance that Laika generated correct compositions for
its classes, because it is more relevant to correctly iden-
tifying viruses. There are two metrics: the probability
that two objects from the same Laika class came from
the same real class, p(real|laika), and the probability
that two objects from the same real class were grouped
together, p(laika|real). It is easy to see that the first
metric could be satisfied by placing all elements in their
own classes, while the second could be satisfied by plac-
ing all elements in the same class. Table 2 summarizes
the results.

Laika is reasonably accurate but far from perfect, es-
pecially on larger programs. The first source of error is
data objects (like strings or int arrays), which are diffi-
cult to classify without pointers; even some of the real
objects contain no pointers. A more interesting prob-
lem arises from the variance in size: some classes con-
tain many more objects than others. Generally speaking,
Laika merges classes in order to increase the class prior
probability p(ω) and splits them in order to increase the
the image posterior probability p(M |ω,X). Because the
prior has the same weight as a single object, merging two
classes that contain many objects will have a much larger

effect on the posterior than the prior. For example, Laika
may split a binary tree into an internal node class and
a leaf node class, because the first would have two ad-
dress blocks and the second two zero blocks. If there
are some 10 objects, then the penalty for creating the ad-
ditional class would outweigh the bonus for placing the
leaf nodes in a more accurate class, but if there are 100
objects Laika is likely to use two classes.

This data also shows just how much Laika’s results im-
prove when the random data, freed chunks, and malloc
information are removed from the heap. Not only does
this result in the removal of 20% of the most random
structures, but it also removes malloc padding, which
can be uninitialized. Without size information, Laika
can easily estimate the size of an object as eight or more
times the correct value when there is no pointer to the
successor chunk.

To avoid too much mucking around in Laika’s dense
output files, we can generate relational graphs of the data
structures detected. Figure 2 shows a graph of the types
discovered by Laika for the test application Privoxy with-
out the aid of location information; Figure 3 shows the
correct class relationships. Edges in the graph represent
pointers; s1 will have an edge to s2 if s1 contains at least
one element of type s2*. We filtered Figure 2 to remove
unlikely classes and classes which had no pointers. We
are able to easily identify the all the correct matching
classes (shown shaded) from the given graph, as well
as a few classes that were incorrectly merged by Laika
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Figure 2: Laika generated type graph for Privoxy Figure 3: Correct type graph for Privoxy

(shown in white). For instance, type s17 corresponds di-
rectly to the re filterfile spec structure, whereas types
s9 and s23 are, in fact, of the same type and should be
merged. In addition, by graphing the class relationship
in this manner, visually identifying common data struc-
tures and patterns is quite simple. For example, a single
self-loop denotes the presence of a singly linked list, as
shown by the class s19/list entry.

5 Program Detection

Because classifying programs by their data structures al-
ready removes all of their code polymorphism, we chose
to keep the classifier itself simple. Our virus detector
merely runs Laika on the memory images of two pro-
grams at the same time and measures how often ob-
jects from the different images are placed in the same
classes; if many classes contain objects from both pro-
grams the programs are likely to be similar. Mathe-
matically, we measured the mixture rate P (imagei =
imagej |classi = classj) for all object pairs (i, j),
which will be closer to 0.5 for similar programs and to
1.0 for dissimilar programs.

Aside from being easy to implement, this approach
has several interesting properties. Because Laika is more
accurate when given more samples of a class, it is able
to discover patterns in the images together that it would
miss separately. The mixture ratio also detects changes
to the frequency with which the data structures are used.
But most importantly, this approach leverages the same
object similarity machinery that Laika uses to detect data
structures. When Laika makes errors it will tend to make
the same errors on the same data, and the mixture ratio
focuses on the more numerous - and therefore more accu-
rate - classes, which means that Laika can detect viruses
quite accurately even when it does not correctly identify
all of their data structures. To focus on the structures

that we are more likely to identify correctly, we removed
classes that contained no pointers and classes that had
very low probability according to the master equation
from the mixture ratio. The main disadvantage of the
mixture ratio is that the same program can produce dif-
ferent data structures and different ratios when run with
different inputs.

We obtained samples of three botnets from Offensive
Computing. Agobot/Gaobot is a family of bots based on
GPL source released in 2003. The bot is quite object
oriented, and because it is open source there are several
thousand variants in the wild today. These variants are
often fairly dissimilar, as would-be spam lords select dif-
ferent modules, add code, use different compilers and so
on. Agobot also contains some simple polymorphic rou-
tines. Storm is well known, and its authors have spent
considerable effort making it difficult to detect. Kraken,
also known as Bobax, has taken off in the spring of 2008.
It is designed to be extremely stealthy and, according to
some estimates, is considerably larger than Storm [15].
We ran the bots in QEMU to defeat their VM detec-
tion and took snapshots of their memory images using
WinDbg.

Our biggest hurdle was getting the bots to activate. All
of our viruses required direction from a command and
control server before they would launch denial of service
attacks or send spam emails. For Agobot this was not
a problem, as Agobot allocates plenty of data structures
on startup. Our Kraken samples were apparently slightly
out of date and spent all their time trying to connect to a
set of pseudo-random DNS addresses to ask for instruc-
tions; most of the data structures we detected are actu-
ally allocated by the Windows networking libraries. Our
Storm samples did succeed in making contact with the
command servers, but this was not an unmixed blessing
as their spam emails brought unwanted attention from
our obstreperous network administrators. To this day we
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Bot µvirus σvirus µother σother Threshold Samples Errors Est. Accuracy ClamAV
Agobot 0.64 0.038 0.89 0.053 0.75 19/27 0/0 99.4% 83%
Kraken 0.52 0.021 0.83 0.078 0.58 34/27 0/0 99.8% 85%
Storm 0.51 0.005 0.60 0.015 0.53 20/20 0/0 99.9% 100%

Table 3: Classification Results. For example, we used 17 of our 34 Kraken samples as training data. When the
remaining 16 samples were compared against the signature, they produced an average mixture ratio of 0.52 with a
standard deviation of 0.021. Of our 27 clean images, we used 13 as training data, and those produced an average
mixture ratio with our Kraken sample of 0.83 with a standard deviation of 0.078. The resulting maximum likelihood
classifier classifies anything with a mixture ratio of less than 0.58 as Kraken, and has an estimated accuracy of 99.8%;
it classified the remaining 17 Kraken samples and 14 standard Windows applications without error. If a new sample
was compared with the Kraken signature and produced a mixture rate of 0.56, it would be classified as Kraken, being
1.9σ from the average of the Kraken samples and 3.5σ from the average of the normal samples.

curse their names, especially those who are still alive.
These three botnets represent very different challenges

for Laika. Agobot is not merely polymorphic; because
it is a source toolkit there are many different versions
with considerable differences, while Kraken is a single
executable where the differences come almost entirely
from the polymorphic engine. Agobot is written in a
style reminiscent of MFC, with many classes and alloca-
tions on the heap. We think Kraken also has a consider-
able number of data structures, but in the Kraken images
we analyzed the vast majority of the objects were from
the Windows networking libraries. This means that the
Agobot images were dissimilar to each other owing to the
many versions, and also to regular Windows programs
because of their large numbers of custom data structures,
while the Kraken images were practically identical to
each other, but also closer to the regular Windows pro-
grams. Neither was Laika’s ideal target, which would
be a heavily object oriented bot modified only by poly-
morphic routines. Storm was even worse; by infecting a
known process its data structures blended with those of
services.exe.

Our virus detector works on each botnet separately; a
given program is classified as Kraken or not, then Agobot
or not, and so on. We used a simple maximum likelihood
classifier, with the single parameter being the mixture ra-
tio between the unknown program and a sample of the
virus, which acts as the signature. In such a classifier,
each class is represented by a probability distribution; we
used a Gaussian distribution as the mixture ratio is an av-
erage of the individual class mixture ratios. An unknown
sample is placed in the most likely class, i.e. the class
whose probability distribution has the greatest value for
the mixture ratio of that sample. For a Gaussian distribu-
tion, this can be thought of as the class that is closest to
the sample, where the distance is normalized by standard
deviation.

We used half of our samples as training data to es-

timate the virus and normal distributions. For normal
programs we used 27 standard Windows applications in-
cluding bittorrent, Skype, Notepad, Internet Explorer,
and Firefox. To select the signature from the training
set, we tried all of them and chose the one with the low-
est predicted error rate. Table 3 summarizes the results.
The detector takes from 3 seconds for small applications
up to 20 minutes for large applications like Firefox.

Because Storm injects itself into a known process, we
had the opportunity to treat it a little differently. We ac-
tually used a clean services.exe process as the “virus”;
the decision process is reversed and any sample not close
enough to the signature is declared to be Storm. This is
considerably superior to using a Storm sample, because
our Storm images were much less self-similar than the
base services.exe images.

5.1 Discussion
The estimated accuracy numbers represent the self-
confidence of the model, specifically the overlap of the
probability distributions, not its actual tested perfor-
mance. We included them to give a rough estimate of
Laika’s performance in lieu of testing several thousand
samples. They do not reflect the uncertainty in the esti-
mation of the mean and variance (from some 10-15 sam-
ples), which is slightly exacerbated by taking the most
discriminatory sample, nor how well the data fit or do
not fit our Gaussian model.

It is interesting to note that the accuracy numbers
for Kraken and Agobot are roughly comparable despite
Agobot containing many unique structures and Kraken
using mainly the Windows networking libraries. This oc-
curs because our Kraken samples were extremely similar
to one another, allowing Laika could use a very low clas-
sification threshold. It is also worth noting that while
99% seems very accurate, a typical computer contains
far more than 100 programs.
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It would be fairly straightforward to improve our rude
50-line classifier, but even a more complicated version
would compare favorably with ClamAV’s tens of thou-
sands of lines of code. ClamAV attempts to defeat poly-
morphic viruses by unpacking and decrypting the hid-
den executable; this requires a large team of reverse en-
gineers to decipher the various polymorphic methods of
thousands of viruses and a corresponding block of code
for each.

5.2 Analysis

Since our techniques ignore the code polymorphism of
current botnets, it is reasonable to ask whether new
“memory polymorphic” viruses will surface if data struc-
ture detection becomes common. Because virus detec-
tion is theoretically undecidable, such malware is always
possible, and the best white hats can do is place as many
laborious obstacles as possible in the path of their evil
counterparts. We believe that hiding data structures is
qualitatively more difficult than fooling signature-based
detectors, and in this section we will lay out some
counter and counter-counter measures to Laika. Our ar-
gument runs in two parts: that high-level structure is
harder to obfuscate than lower level structure, and that
because high-level structure is so common in programs,
we can be very suspicious of any program that lacks it.

Most of the simplest solutions to obfuscating data
structures simply eliminate them. For example, if every
byte was XORed with a constant, all of the data struc-
tures would disappear. While the classifier would have
nothing to report, that negative report would itself be
quite damning, although admittedly not all obfuscated
programs are malware. Even if the objects themselves
were obfuscated, perhaps by appending a large amount
of random pointers and integers to each, the classifier
would find many objects but no classes, which again
would be quite suspicious. Slightly more advanced mal-
ware might encrypt half of the memory image, while cre-
ating fake data structures from a known good program in
the other half. Defeating this might require examining
the instruction stream and checking for pointer encryp-
tion, i.e. what fraction of pointers are used directly with-
out modification.

To truly fool Laika, a data structure polymorphic virus
would need to actually change the layout of its data struc-
tures as it spreads. It could do this, perhaps, by writing
a compiler that shuffled the order of the fields of all the
data structures, and then output code with the new off-
sets. It is obvious that this kind of polymorphism is much
more complicated than the kind of simple instruction in-
sertion engines we see today, requiring a larger payload
and increasing the chance that the virus would be ener-
vated by its own bugs. The other option would be to fill

the memory image with random data structures and hope
that the real program goes undetected in the noise. This
increases the memory footprint and reduces the stealth-
iness of the bot, and has no guarantee of success, since
the real data structures are still present. Detecting such
viruses would probably require a more complicated de-
scendant of Laika with a more intelligent classifier than
the simple mixture ratio.

The greatest advantage of Laika as a virus detector
is its orthogonality with existing code-based detectors.
At worst, it provides valuable defense in depth by pos-
ing malware authors different challenges. At best, it can
synergize with code analysis; inspecting the instruction
stream may reveal whether a program is obfuscating its
data structures.

There are two primary disadvantages to using high-
level structure. First, a large class of malware has no
high-level structure by the virtue of simplicity. A small
kernel rootkit that overwrites a system call table or a bit
of shellcode that executes primarily on the stack won’t
use enough data structures to be detected, and distin-
guishing a small piece of malware inside a large program
like Apache or Linux is more difficult than detecting it
in a separate process. However, we believe that there is
an important difference between fun and profit. Turning
zombie machines into hard currency means putting them
to some purpose, be it DoS attacks, spam, serving ads,
or other devilry, and that means running some sort of
moderately complex process on the infected machines.
It is this sort of malware that has been more common
lately [1, 12], and it is this sort of malware that we aim
to detect.

The second main disadvantage is the substantial in-
crease in resources, in both memory and processor cy-
cles, when compared to current virus scanners. Although
a commercial implementation would no doubt be more
highly optimized, we do not believe that order of mag-
nitude improvements are likely given the computational
complexity of the equations to be solved. Moreover, our
data structure detection algorithms apply only to running
processes. Worse, those processes will not exercise a
reasonable set of their data structures unless they are al-
lowed to perform their malicious actions, so a complete
solution must provide a way to blunt any malicious ef-
fects prior to detection. This requires either speculatively
executing all programs and only committing output after
a data structure inspection, or recording all output and
rolling back malicious activity. Although we believe that
Moore’s law will continue to provide more resources,
these operations are still not cheap.
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5.3 Scaling
Laika runs in linear time in the number of viruses, with
moderately high constants. Clearly a commerical ver-
sion of Laika would require some heuristical shortcuts to
avoid stubbornly comparing a test image against some
105 virus signature images. The straightforward ap-
proach would be to run Laika on the unknown program,
record the data structures, compute a signature based on
those data structures, use that signature to look up a small
set of similar programs in a database, and verify the re-
sults with the mixture ratio.

It turns out this is not completely straightforward after
all. Consider the most natural approach. The list of data
structures may be canonicalized by assigning each struc-
ture a unique id. Typed pointer issues can be avoided by
assigning a structure a pointer only after canonicalizing
the structures to which it points. A program image could
then be represented as a vector of structure counts and
confidences, and the full mixture ratio computed only
for the k nearest neighbors under some distance metric.
This approach is extremely brittle. Imagine we have a
data structure where one field is changed from ’pointer’
to ’zero’. This not only changes the id of that data struc-
ture, but also all structures that point to it. In addition, the
vector would lie in the space of all known data structures,
which would make it hundreds of thousands of elements
long. We believe that these difficulties could be solved
by a bit of clever engineering, but we have not actually
tried to do so.

6 Related Work

Most of the work on the semantic gap so far has come
from the security community, which is interested in de-
tecting viruses and determining program behavior by
“looking up” from the operating system or VMM to-
wards the actual applications. While most of these prob-
lems are either extremely computationally difficult or un-
decidable in theory, there are techniques that work in
practice.

6.1 The Unobfuscated Semantic Gap
Recently, many researchers have proposed running op-
erating system services in separate virtual machines to
increase security and reliability. These separated ser-
vices must now confront the semantic gap between the
raw bytes they see and the high-level primitives of the
guest OS, and most exploit the fixed interfaces of the
processor and operating system to obtain a higher level
view, a technique known as virtual machine introspec-
tion. Antfarm [18] monitors the page directory register
(CR3 in x86) to infer process switches and counts, while

Geiger [19] monitors the the page table and through it
can make inferences about the guest OS’s buffer cache.
Intrusion detectors benefit greatly from the protective
isolation of a virtual machine [6, 13]; most rely on prior
information on some combination of the OS data struc-
tures, filesystem format, and processor features. Pol-
ishchuk et al. [30] also attempt to determine heap types,
but they do so from a supervised environment, where ex-
act malloc locations and debug information are available,
making the problem considerably easier.

6.2 The Obfuscated Semantic Gap

Randomization and obfuscation have been used by both
attackers and defenders to make bridging the semantic
gap more difficult. Address space randomization [4],
now implemented in the Linux kernel, randomizes the
location of functions and variables; buffer overflows no
longer have deterministic side effects and usually cause
the program to crash rather than exhibit the desired ma-
licious behavior.

On the other side, virus writers attempt to obfuscate
their programs to make them more difficult to disassem-
ble [25]. Compiler-like code transformations such as
nop or jump insertion, reording, or instruction substitu-
tion [21] are relatively straightforward to implement and
theoretically extremely effective: universal virus classi-
fication is undecidable [9] and even detecting whether a
program is an obfuscated instance of a polymorphic virus
is NP-Complete [7]. Even when the virus writer does
not explicitly attempt to obfuscate the program, new ver-
sions of existing viruses may prove effectively polymor-
phic [16].

6.3 The Deobfuscated Semantic Gap

Polymorphic virus detectors usually fall into two classes:
code detectors and behavior detectors. For example,
Christodorescu et. al [8] attempt to detect polymorphic
viruses by defining patterns of instructions found in a
polymorphic worm and searching for them in the un-
known binary. Unlike a simple signature checker, these
patterns are fairly general and their virus scanner uses a
combination of nop libraries, theorem proving and ran-
domized execution. In the end it is capable of detecting
instruction (but not memory) reordering, register renam-
ing, and garbage insertion. A recent survey by Singh
and Lakhotia [31] gives a good summary of this type of
classifier. In addition, Ma et. al [26] attempt to classify
families of code injection exploits. They use emulated
execution to decode shellcode samples and cluster results
on executed instruction edit distance. Their results show
success in classifying small shellcode samples, but they
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rely entirely on prior knowledge of specific vulnerabili-
ties to locate and extract these samples.

The second class of detectors concentrate on behavior
rather than fingerprinting. These methods usually have
either a group of heuristics for malicious behavior [24]
or statistical thresholds [11]. Often they concentrate on
semantically higher level features, like system calls or
registry accesses rather than individual instructions. Be-
cause they are not specific to any particular virus, they
can detect unknown viruses, but they often suffer from
false positives since benign executables can be very sim-
ilar to malicious ones.

6.4 Shape Analysis

Modern compilers spend a great deal of time trying
to untangle the complicated web of pointers in C pro-
grams [33]. Many optimizations cannot be performed if
two different pointers in fact refer to the same data struc-
ture, and answering this question for structures like trees
or hash tables can be difficult. Shape analysis [10, 14]
attempts to determine the high-level structure of a pro-
gram: does a set of allocations form a list, binary tree, or
other abstract data type? Although it can enable greater
parallelism, shape analysis is very expensive on all but
the most trivial programs. Our work attacks the problem
of high-level structure from a different angle; although
we do not have the source code of the target program,
our task is simplified by considering only one memory
image.

6.5 Reverse Engineering

Reverse engineering is the art of acquiring human mean-
ing from system implementation. However, most of the
work in this field is concentrated on building tools to aid
humans discover structure from systems [17, 34], rather
than using the information directly. Furthermore, a large
amount of the reverse engineering literature [27, 35]
is concerned with reverse engineering structure from
source code to provide developers with high-level under-
standing of large software projects.

A more superficially similar technique is Value Set
Analysis [3]. VSA can be thought of as pointer alias-
ing analysis for binary code; it tries to determine pos-
sible values for registers and memory at various points
in the computation. It is especially useful for analyzing
malware. Laika differs from VSA in that it is dynamic
rather than static, and that Laika’s output is directly used
to identify viruses rather than aid reverse engineers.

7 Conclusions

In this paper we have discussed the design and imple-
mentation of Laika, a system that detects the data struc-
tures of a process given a memory image. The data struc-
tures generated by Laika proved surprisingly effective for
virus detection. The vast majority of current polymor-
phic virus detectors work by generating low level fin-
gerprints, but these fingerprints are easily obfuscated by
malware writers. By moving the fingerprint to a higher
level of abstraction, we increase the difficulty of obfus-
cation. Laika also provides valuable synnergy to existing
code signature based detectors.

Laika exploits the common humanity of programmers;
even very flexible fixed interfaces like Von Neumann ma-
chines are often used in standard ways. Because fixed
interfaces dominate the landscape in systems - often the
interface is the system - there should be many other such
opportunities.
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